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II

SUMMARY

This report describes applications of the method of
characteristics to supersonic flow about axially symmetrig
al, open-nosed bodies, such as diffusers. A general proce-
dure 1is given for the computation of velocity distributions
on the external surface of axianlly symmetrical diffusers of
arbitrary shape. The case of straight-line diffusers is de-
veloped in more detail, including the case with 1incidence.
A special function is introduced which allows a quick ana-

lytical solution of the problem of straight-line diffusers.
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1, INTRODUCT ION

The main purpose of this paper is the discussion of
the axially symmetrical éﬁpersonic flow past open nose dif
fusers (with the exception of the last section, where also
the solution for flow with an incidence angle is outlined).

The diffusers are assumed to have a sharp lip (see
figure 1) and such shape that the flow is isentropic and
may satisfy certain simplifying assumptions discussed in
section 2.

In discussing the flow past diffusers only the exter-
nal one is considered. For this to be justified, perfect
matching must be agsumed; i.e. there is no "splllage".

The x,y reference system is chosen in such way

y |
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Fig, 1
that the x axis coincides with the symmetry axis, and has
the same sense as the undisturbed flow velocity.

The local surface angles, formed by the tangent of



the generator of the diffuser outer surface, with the sym-
metry axis, are called 8 .
All the conditions at the nose point are designated
with the subscript "o";
€eBe Yo, B ,Us, elcC.
Notations and definitions follow those normally used.
Particularly
W = represents the value of flow velocity at any
point of the flow field.
We = the value of velocity in the undisturbed region.
U,V - represent the horizontal and vertical compo=
nents of the velocity W, respectively.
u,v - represent the horizontal and vertical compo=-
nents of the perturbation velocity.
Due to coincidence of the direction of W, and the x

axis, it is possible to form the following relations:

U, =W

Vo =0

U =T +u
v =v

The symbol  denotes cot u , where p 1s the Mach
angle; M-denotes the Mach mumber (f3 =VM-1' ) By "Mach
lines" we shall understand the straight lines, tangent to
the characteristic lines. Both lines (Mach and character-
istic) are, of course, identical in the undisturbed flow

region.



In later sections the "straight line-diffuseér" will
be separately discussed. By this name we slall -tundersbtand
those diffusers whose outer surface forms a straight+ ii’ﬁé
in an axial scection (see figure 7).

Here is a short outline of the . paper: - -

In sections 2 to 8 the simplified charactsristic equa
tions according to the Sauer-Heinz method are -adapted to
diffusers. '

Nets of Mach lines and equations for Ww-and ¥ sre es-
tablished for each point of net which allow the ‘e&ldula
tion of these velocities from known data at former points
of net. Next, by means of algebri.cal transformations, the
¥ - components of pert ™~tion velocity are eliminated,and,
in special cases, solutions are found for u directly from
the geometrical position of the points ("the first Mach
line", see section 5).

After adapting the above described method to straight
line diffusers (gection 9), the possibility is outlined of
solving this problem (i.e. of straight line diffusers) by
analytical means; this is facilitated by assuming a func-
tion O (x,8,8) , defined by equation (16), section 10,
and its limit O (x,p) for 8—0 (seection 11).

The next sections are dedilcated to finding the numer-
ical values of function O (%pB) (section 12) and 1its
analytical form, first on the basgsis of formerly described
methods (section 13), and next, utilizing operational cal-
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culus (sections 1lj=16). There are obtained an exact solu-
tion~equation (39) and approximate solutions-equations(22),
(40) and (ul).

In sections 17~18 the approximate solution of the u-
veloeity distribution is given, not only for the diffuser
sﬁrface, but for the entire space around it.

Finally, in the last section, the solution of flow
with an incidence angle 1is outlined.

Graphs, ilustrating all more important results, are

enclosed.



Part One - GENERAL METHODS

Z. THE DERIVATION OF THE SAUER-HEINZ EQUAT ION

The considerations of this section will be based on
the well known differential equation of the characteristics

for an axially symmetrical isentropic flow, namely:

+dg - AW i i di

+ do o ol + sinp sin @ y = 0 (1)
where the top signs refer to the differentiation along the

left running (L) ~ and the bottom - along the right run-
ning characteristic lines (R - see figure 2).

Fig., 2

Replacing the velocity W by its components U and
and the element dl by the expression tdy/s'm()“e) ,

after some transformations, one gets:



In order to simplify the above equation, two assump-
tions will be made; these are approximately equivalent to
the linear theory of V. Kdrmén and Moore. These assumptions
are:

(1) - u» 6 , vhich means that angles © must
be relatively small, and Mach numbers not too
great.

(1i) - M2 g 9 that 1s, the Mach numbers are al-
most constant and equal approximately to M,
for the undisturbed flow.

The assumption (i) implies, obviously, that:

M8 2p

which enables to present equation (1') in a very simple f1

nal form:

d(vy)  fydld = 0 (2}

The assumption (ii), which to a certain point is the
consequence of (i), means that all the Mach lines may be
treated as mutually parallel straight lines. This fact
makes the integration of the equation (2) considerably eag

ler.



3, THE INTEGRATION OF THE SAUER-HEINZ EQUAT ION

In order to perform the integration of equation (2),
let us choose a certain number of arbitrary points on the
body surface and draw therefrom left (1) and right running
(R) Mach lines, parallel to the Mach lines of the undis=
turbed flow. This procedure will create a "net" of Mach

lines which we shall call a Mach net.

Fige 3

To facilitate the caleculation, let us number the lines
of the Mach net in the manner shown in figure 3. Points,
which are the intersections of the left Mach line with num-
ber L and of the right one with number R, will be .designated
oy (L3R).

Assuming that the distances between neighboring points



in the Mach net are small enough, we may write:

(1R}

!y dU = % (Yo + vaR—d)(uL',l-uL‘m"‘) =

(LyR-1)
= (yea + YW ir = Usrer)
>y LR Yi;m4 uR LR
and-
[(S1)}
j ydu ~4 %(YL;R + YL-1;I)(ULm— uHm) =
(=1R)

= % (jL;R T yL‘ﬂR)( u‘\.;R - u‘L—ﬂR)

thus, the result of integrating (2) may be written

(Uy)ur = (VY) Gt = '4[[5 (Yuir ¥ Yot (Unin - U'L'.R*) (3)
(VY) = (Uy)eayr= ‘42 P (yum+ Yeor ) um = Ur) (31)
the boundary condition iss:
(3")

Ve = (U + W) tan B = (Ue +u) Bk

where 6, denotes the slope at point (K;K).
The problem of determining flow velocities in the net

points will be now discussed in four parts according to



the positlon of the volats.

L. THE DIFFUSER NOSE POINT

Let us choose two points on the same Mach line: P on
the diffuser surface and @ in the undistrubed region (see

figurs L)

\\o y
Q_y

(0;0)

Flg. It

In order to calculate the veloelty up, 1t 1s possible
to use equations (3') ana (3%)

Solving these equations and assuming that P -—= (03;0)
and Q-+~(0;0), one gets immediately:

Uz - fo y_ = - —%"—um ()

whera the subscript "O" refers to the point (0;0). The
equation (ly) ls, of course, equal to the result for a two

dimensional flow, deflected through an angle 0O,. Obvious~
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ly, this must have been expected, considering that the prol
lem in the close neighborhood of the nose point 1is indeed

two dimensionzl.

5« POINTS ON THE FIRST MACH LINE (IL=0)

In order to solve the problem for the first Mach line,
i.e. the Mach line with IL=0, let us choose on it two points:

(O3R) and (O3R-1) (see figure 5)

Fig.

On the right Mach line, starting from (O,R), let us
assume a point @  Recalling that the flow is undisturbed
at Q and assuming that Q is approaching (0,R) (therefore
Yo. ™™ Yo;r 9 oné gets immediately from the right charac-

teristie equation:

VYo = - pyo‘.ﬂ Uo;r )
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It 1s evident that this relation is valid for all

points on the first Mach 1line,and particularly for (0,R-1),
which yields:

(W)o;k-i = "ﬁ Yot Yo (5")

Substituting values (5) and (5') into the equation (3),

one can calculate the value of wu,, as a function of uge.

R = ZD)R+3207R'1 u B
SO et Yot 6)

It' is possible, however, to obtain the value of u,s

as a function of Yo only. For this purpose, let us call

Au =

Wer — Wojr-t
AY = Yor — Yoiret
The equation (6) becomes now
Uer = &iMEiﬂxi(“mﬂ‘Au)

Lfyo;R-‘Ay (7)

Assuming that Avy-+-0 and neglecting the second or-
der terms, the following differential equation is

obtained
(omitting the subscripts)
du __ 1 dy '
x T2y (7')
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whose solutlon is:

w= [i} WU (8)

~|>

Yo

where u, and yo. are the values at the diffuser nose.

6. POINTS ON THE DIFFUSER SURPACE

As to points (K;K) which lie on the diffuser surface,
admitting that the flow 1s reaching them with thse right

Mach line (see figure 6) equations (3') and (3'') must be

Fig. 6

used. After solving them and eliminating (vy),, by means

of equation (3), one gets

Uik = Awx M-t - BK‘,K Uit + Crix Uo (9)

where A, B and C are certain geometrical expressions depend
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ing on positions of points (K;K), (K-1;K), (K-1;K-1) and on
slopes of the diffuser surface at pointa (K:K) and (XK-1;K-1)

Their values are:

Ak = Vi + 2Y ket + Y etiket N

L3

) (1+?;E5>VK;K + Yx-15x

B _ (1— ;B&i)YK—tKﬁ + yi(—q;b( [ (10)
KiK (,1_{_;‘_3@&) Y + Y-k

C - 2'(']'+ %)(%{y")“ - %:'! YK-i:rM)
KK = J

(1+ Z_p@‘) yK;K + yl(d;K
Naturally, assuming a Mach net such that:
Yoir=VYoirt = Yojat™ Yoz = ... = const = Ay

and denoting: Yk = Yxeaiker = (Ay)K the. values of
4, B and C may be p"resentéd in a form more convenient for

numerical calculations, 1.e.:

A = 4 Y + 24y -3(Ayk
K\K - 9
2(1+ Eﬁ)ym + Ay = (Ay)«

2 (1 2) Yo+ Ay —2(4- FNay

BK;K: i1, 8 i > (101)
(14 ) Y + By = ()
o 2 Py ]
X

2<§%‘) Yeix TAY ‘(A\))K y
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As to the point (1;1), using the more accurate equa~

tion {(5') instaed of (3),. one gets:

('l %i) gj )AL

Wy = W -—
" (1+ %“) e t A’—%-(éy)-‘- e
By - (By), (9')

u
21+ By +ay-(ay) "

7. THE INTERIOR POINTS OF THE NET

Solving equations (3) and (3!) for

_ (Uy)vhk— (vy)l-;l-1+ %B (yL:R + yL‘.R-'l'_) Wipn-1 + %p (YL;R + y‘-"i“) U"Hia

Uik = (11)
a %p( ?_yt‘,R + Yurat Y- )

writing
(VY)L-nR‘ Uyt = [(Uy>L-1',R - (VY)L-1;R-1] -
- [(U\})L-,aq - (\Pf)l.-i;bi]

and utilizing directly equations (3) and (3') to calculate
the above expressions as a function of u, upon eliminating

the values of (vy) we get finally:



Ui = Diun Uigr = Bur Wpy = Fum Wissreg

where D, E, and F are certain geometrical expressions,

(119

de~

pending on the Mach net assumed. Their values are:

DL;R

EL',R

FL;R

-

I Yitir T Yiair-e

2 YR+ ViRt Yot

3 Yisk-i + Yieiin \

Z\/L;R— YL Rt YR

3Yumatd b A5 "Zyu‘.a

2' y L‘,R+ y\.‘,R~1 +\/L~4;R

(12)

Assuming the same Mach net as in the former section,

the values of D, E, F may be presented in a simpler form:

DL;R -

Eir

FL;R =

lfYL;R +2A\] “S(Al)u )

Zf‘)’\:,n. - (AY) v

Q'\LL;R" 2Ay — (&Y

4yu-(Ayh
4yum ~3(AY) L
byun = (Ay)e ' J

(121")

Caleulating particularly the points of the "second"

Mach line (i.e. with L = 1), in order to eliminate

the
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values (vy), it 1is possible to use equations (5) and (5')

-more exact- instead of (3). Thus:
Wy)oir = WY gpe0 = B Yo,r-1 Uoypg = ,3'\/0.,‘; Uop +
+ 12' p(\/hk-'l + )’o;a—«)(u R4 — W o;R-4>

Substituting thils expression into equation (11), and

solving 1t for u,, , one gets:
Uap = Egjp Uapy + Gagr(Ug g~ Wo,n ) (11")

where the value of E,; 1s determined by formula (12') and

- Yoir = Yuip _ _Ay -(ay), (12"
. = = 12")
G 2Yur+ a4 + Yo lf\/q-,n— (A\/)4

As to expression (Weg.4~ Uoe) 1n equation (11"),
it is possible to present 1t in the form -see equation
(7)-:

et — U = LBy
Homt — Loin 4 yoir = Ay

W O R=-4

The equations (L) and (8) enable to calculate the
u-velocity directly from the geometrical positions of
points, and the equations (9), (9¢), (11'}, (11") - from

the known data at former points of the Mach net,
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8. A PRACTICAL PROCEDURE TO CALCULATE THE VELOCITY DISTRIBU
TION ALONG THE SURFACE OF A DIFFUSER |

The practical procedure may be presented as follows:

On the first Mach line of a diffuser one chooses cer~
tain number of equidistant points (including the nose point)
8o that the Mach net, starting from thease (see figure 3)
covers the entire reglon where the velocity distribution is
to be calculated.

After finding from equations (10') the cooeficients 4,
B and C for all surface points, and D, E, F from equations
(12') for all interior points, one finds the velocitles u
at different net points, in the following order: |

(1) - nose-point - equation (i)

(1) =~ points on the first Mach line - equation (8)

(111) - point (1;1) next to the nose on diffuser sur-

face - equation (9')
(iv) = poinﬁs on the Mach line L = 1, issuing down-
stream. from point (1;1) - equation (11")

The procedure described in items (1i1) and (iv) is
nextvrepeated in the same order with respect %o other sur-
face points - equation (9) - and lines L = const - equation
(11") - issuing therefrom, till the last net point in  the
diffuser surface 1is reached,

It is necessary to mention here that in order to ob-

taln the velocities u for n points on the diffuser sur-
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face, they must be determined also for %n(n—‘l) remaining
net points. So, on the one hand, the more dense 1s the
Mach net, the more accurate the results will be, but, on
the other hand, the amount of work reéquired increases con=

siderably.
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Part two - STRAIGHT LINE DIFFUSERS

9. ADAPTATION OF THE METHOD TO STRAIGHT LINE DIFFUSERS.

In case of a straight line diffuser the amount of
work may be reduced, assuming that the distance between
two neighboring net points on the surface of the diffuser
is constantv(see figuﬁe 7). Thus, the x co-ordinates  of
these peints will be K.m, where X = 03132} ... and n is
certain arbitrary length on which depends the net density

and, therefore, the accuracy of the solution.

i : : H

Y

Fig. 7

It results from geometrical relations, that (— sec~

tion 1)
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Yur T Yo -ijg (-Ro)L + ;n_p (1+BB)R
(ay)x = const = mtanB = mo
Ay = 'zmp' (1+po)

Substituting these values into equations (8), (9),
(9'), (11'), and (11%), and dividing them by u, one gets:
[A] For the first Mach line:

o = 3] 03

For the diffuser surface:

4-2p8 = 2
Uik — 2+ TR ™ Uepy (fg)m* % e m Vit 4
to T (148 et Eim Lo (1+8) Yot o Uo

(1+§) mo (1)
(# 'g) Yrixt 4—1—'%&"‘

particularly, for K=1, one may use the more exact equation:

o - LBl ga T e (1)

o © (+ ?')\}4‘.1"’ 1(.;%&"1 (1*%) 7“1“‘&?;9"‘
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For the interior points:

+-2p0 1+2030
Wi _ YL;&"—J,'E&"“ Uit + Yon~ "1{;‘"“ Wiy ket _

— T

Wae Yiir ~ _"’7_‘_'.7;9 Ue Yur- %g Up

- (15)

3
Yue T MO Y
yL‘.R— 14; mg Ww -]

and particularly for L = 1, one may use more exact equa~

tions
1+230 1-po
War Vyk_ ALY O 8p m (uc;t-'_uo-,a\) (15%)
Wo ~ Yo — 78 Wo Yo — MO\ U U -2
H 1'_ " ﬂ’

where the coefficients of velocities ‘(u/uo), in spite of
their apparent complication,can be determined  numerically
for a given diffuser and a given flow quite easily and rap
idly.

Three graphs are enclosed - 1 to 3 -~ (see pg.60/62),
wvhich show the wu -velocity distribution, found by means of
the above described method. The angles 6 are: 0,025 radi-
ans, 0,05 radians and 0,125 radiansj 3 1s assumed equal to
L, and the segment m varies from 0,2y, for initial points
to 0,8 yo for last points of net, The computations were
performed in the region O £ x£ 16y, . The dependent va-

riable is Y/,



22

10. AN OUTLINE OF THE ANALYTICAL SOLUTION IN THE CASE OF A
STRAIGHT LINE DIFFUSER.

The method deseribed in the preceding section fur-
nishes a possibility of finding in a simple way numerical
results for the velocity distribution along the surface of
a straight line diffuser. It doesn't, however, determine
the analytical form of this solution, nor its relation
with the zngle 6.

In order to answer this question, let us assume, for
the sake of argument, that the diffuser extends downstream
to infinity. Obviously, in the case of supersonic flow,
this does not restrict the generality of a solution.

Let us call w(x) a function of x which represents
the uw -veloecity distribution under investigation along the
surface of the diffuser. The value of this function at the
nose point and at infinity can be immediately established,

In fact, at the nose point, as it was already shown
in the preceding section, the velocity w(e) (which will
be, as earlier, indicated by w, ) is equal to the corre-
sponding velocity in a two dimensional deflection, that is:

ULy =2 -~

8,
p Lo

As to the velocity W (e) (which willl be indicated as

We 9 it 1s possible to use a more intuitive similarity or
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"scale effect" reasoning, Consider at first that the
length of the diffuser is limited and equal to a (see fig-
ure 8). The radius of its nose point is Yo o If we now ex-
tend a to infinity, but choose the scale of the drawing
such that this length remalns always the same, then vy, (in
the figure) will tend to zero, becoming zero when a=o.
In this case we obtain a cone. Thus the velocity on the
surface at infinity for a given supersonic flow is unique-
ly defined, since the velocity of the surface of a cone
does not depend on the position of the point but only on
the angle 9,

One can obtain this velocity from appropriate plots,
or from cone tables, or approximately (for small values of
0 J:

2

pe

Llot):‘ez ln
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In order to establish the form of the function w(y
for values 0<X<oo , it 1is convenient to assume an puxi-

liary function:

O (x,0,p) = = (16)

which, independently of ® and B , for x = o and x = @

admits the following values:

T(oep) = WTum = 1

— Ueo- y =
O@ep) = Totum = 0

The behavior of the function O for other values of

X is - for the time being -~ unknown. It will be investigat
ed, however, in the next sections. Once the function

O (x,8,R) is established, finding of the function w ()

becomes trivial, because from equation (16):

U) = Weo + (Ue — Uw) O(x,0,p) a7)

We see, from equation (17), that the function O has
a very simple physical interpretation: it indicates the man

ner in which the transition from two dimensional flow at
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the nose point ( o'=1 .. Wy =W, ) to three dimensional
conical flow at infinity ( =0 .. W)= Ue.) 1is per-
formed along the surface of straight line diffusers.

‘11, DETERMINATION OF THE LIMIT OF THE FUNCTION O AS THE
ANGLE © APPROACHES ZERO.

When © =0 , the flow is undistrubed and the func-

tion o has, in this case, an undetermined value:
- 9
O’(X,,O,ﬁ) -0

Regardless of this, as will be proved, the limit of

this expression exists., Let us indicate it:
d(x,p) = Lim G (0,p)

To prove its existence, let us note, that

s T LL()() - u.g —_
S5 TWOR) = U e T

Using L'Hospital rule, we have:
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ln—.
Moo — i — B9 _ -
b R i (pO) = 0
from which
- . U (x 18
%L’ng O (x:0.p) = gl*r% —Q_\Lo (18)

The function “()/y, can be calculated mumerical-
ly by means of equations (13), (14), (14'), (15) and (15').
We recall that all these equations are determined when ©8-0

and have the following limits when 0 =0 :

[A] For L = O: 4
[es] = [1+ ]
For-L = R (-‘-KtO) :
[se] = 2 [Us] - [sna] (20)
and particularly for K = 1
[us] = 1- %mt] (20")
° 1+ T

For L*R; L%0
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ez O I o) 2O I ] fased] 1)

and particularly for L = 1l:

3 * 4 *
= S Lol ey (Lt ) @0

wHeres

m*:

m
Ryo

Since all these equaltions are determined it is evi-
dent that the limit (18) exists and may be numerically cal-
culated at poinfs Xm by soiving for W/ w,
Moreover, it is clear, from thée structure of the above equg
tions that this solution is a furction of a parameter m* =

=m/pBy. « Thus, introducing a new variable:

§ = X
Py
to each point x = Km on the x axis, there will correspond a

point:

§ = KgRe = K

on the § axis. The values Wwx/UWo will be now subordi-
nated to the peoints Xm* bhut as they depend only on the
choice of m* the function G can be expressed as a Tfunc-

tion of only one variable § . Thus:
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Lim o wa.p) = $(§) = {14,

12, NUMERICAL EVALUATION OF THE FUNCTION O (%)

Substituting into equations (19-21) any numerical val
ue for m* and solving for Yk /u, we shall obtain the
values of the function or(y) at the points § = K m* . The
following tables give the values of o as a function of §

for m*=04 and for m" = 0,2 in the range 04§44

‘ o (%) - (%)
m*=02 | mfzo0.4 A =02 | m*=0,4

0 1 1 2,2 | 0419 -
0,2 | 0.907 - 2yl | 0.39L | 0.394
0,4 | 0.826 | 0.825 12,6 | 0,371 -
0,6 | 0.756 - 2,8 | 0.351 | 0.351
0,8 | 0.69L | 0.693 3,0 | 0.332 -
1,0 | 0.640 - 3,é 0.315 | 0.315
1,2 | 0.592 | 0.592 3yl | 0.299 -
1,4 | 0.549 - 3,6 | 0.285 | 0.285
1,6 | 0.511 | 0.511 3,8 | 0.271 -
1,8 | o.l477 | - L | 0.259 | 0.259
2 | O.4l7 | 0.LL7
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Substlituting for m#* values less than 0,2 one will not
obtaln any changes 1ln the first three declmal points of the
function O (¢) « The result obtained for m* = 0,2 can be
therefore considered as a final one for the first three degc
{mal places.

For greater values of §,({>4),1t is necessary to in-
crease the valus of m¥ . Although such results for W,
ét small values of K are always determined wlth relatively
greaster error, as K increases a tendency towards "self cor-
rection" is observed. Thus, comdining different results
(with different values of m%*), it is possible to reproduce
relatively exact values of o'(y).

These values are:

§ o) § o ()
5 0.208 10 0.104
6 04175 20 0.051
8 0,131 10 0.025

Frqm the last results a tendency can be distinctly
seen for the functioﬁ o'(¢) to approach {4 for great val-
ues of § | |

Graph li shows the shape of the function 0o ({) in the
region 0 £ § £ 16,
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13, THE SUCCESSIVE ANALYTICAL APPROXIMATIONS OF THE FUNC-
TION O°(%).

Let us solve the system of equations (19-21') for
Wy k (K=1;253;...) , without substituting any numerical val
ue for m* , These solutions will be, thus, functions of
m* 3 let us indicate them T,(m*); Ta(m* ;... «Generally,
each function Ty (m*) determines approximately (with accu~
racy increasing with K ) the value of the function G‘(g) at
point § =Km* . Thus, for each concrete value of K we

have:
O(km*) = Tk(m*)

But, as the value Km* (for concrete K ) is not fixed and

may admit any arbitrary value § , we have:
o) = Tw(y/k)

So, the sequence of the functions: T;(¢) ; T2 (§/3);
Tx (§/3); ... represents the successive, more and more accu
rate approximations of the function o (y)

In the case of K=1 one obtains:

~£8+VIE LY

(1+ £5V1+ 5%

Togy) =
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Expanding the value of \/]+ %? into power series
and keeping only the first two terms, one obtains immediate

ly:
o~ - 1
O () = Tu(y) = (m (22)

as a first approximate of the funection O"(g)‘
Choosing K=1, the functions T become at once
very complicated. For instance, already for K=12 , there

is:

.3
o §- 48+ 3214256
W S () @

For practical purposes, the approximation given by
equation (22) is quite adequate. Being very simple, it prg
vides at the same time quite -good accuracy, especially in
the range 04 §44 3 this may be demonstrated by a com-
parison with the yalues of the function 0'(¢) given in

section 12,



¢ | o | T £ | o |d+30
0 1 1 2,2 | 0.U19 | 0.416
0,2 170,907 | 0.907 2,1t | 0.394 | 0.391
O, | 0.826 | 0.826 2,6 | 0.371 | 0.367
0,6 | 0.756 | 0.756 2,8 | 0.351 | 0.3L6
0,8 | 0.694 | 0.694 3 0.332 | 0.327
1 | 0.6L0 | 0.640 3,2 | 0.315 | 0.309
1,2 | 0.592 | 0.592 3,0 | 0.299 | 0.292
1,4 | 0.549 | 0.549 3,6 | 0.285 | 0.277
1,6 | 0.511 | 0,510 3,8 | 0.271 | 0.263
1,8 | 0.477 | 0.476 L | 0.259 | 0.250
2 047 | 0Ll

The behavior of the function o (¢).for large values
of § may be investigated by means of its higher approxi-
mations: T (%/3); T3(3/3); ... 3 it can be shown that they
all approach, (for large values of 3 ), the fu.nc’cionsom{1
where a varies, depending on K 3 as to the function ()
itself, it seems from numerical values given in section 12,
that a=1, i.e. that O(f) approaches, for large values of

§ the function § % ( this will be confirmed in next sec-
tions).

Tﬂe comparison between the function O(x) and its
first approximation [1+4%]™for large values of § , shows

that both functions approach zeroj however, the former does
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it like the function §™* while the latter as 16 §{ ~ .Thus,

the absolute error:
o) - (1+48)7]

which, as can be established, is always less then 0.025,
will also approach zero for large values of { . The rela-
tive error will, of course, tend to infinity. For practi-
cal computations of the w -velocity, however, with certain
restriction, it will have no major effect (see section 17).
Graph 5 shows the comparison between the  functions

() (1+%i)f2 and % in the range 04¢%4 16

1l;, THE OPERAT IONAL FORM OF THE FUNCTION (%)

It is possible to obtain the exact analytical repre-
sentation of the function 0'(4) by means of operational
calculus.

For this purpose one will use the transformations:

Fip) = P ffo) €™ dx (2l)
0

which will be denoted by the symbols:

Fip) = P

The inverse transformation will be denoted as:
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fo) = P [Fe]

‘As it is well known, the inverse transformation may
be determined,under certain restrictive conditions,by means

of the formulat

Xo +L00
- xe (25)
P Fe] :ziLIF(E)”e{ de

Xo-100

where x, must be chosen so that the line Re () = X Pas-

ses to the right of all singularities of the integrand.
The function o©°(¢) may be determined by solving the

differential equation for the perturbation potential ¢ in

three dimensional axially symmetrical flow:

» 1 de

with boundary conditions

- (2 -
(U)\/:oo - _b%)y.-.cn =0
27)

Whyayorex = (%%)\Fwex =0 Ue

(once it is assumed 6-—-0 , the second term of the sum

Yo+0x will be omitted).
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Transforming equation (26) by means of equation (2l)
with respect to the variable x , and taking into consider

ation that:

P28 = 8 P Plel - Propere - P(22) eno }

and that the choice of the co-ordinate system is such that

for x = +0;

one obtains the equation:

d* 1t d o

ap Plel+5 55 Rlel-pe*Plel =0 (@8
the solution of which is:

Plel =CGla(pyp) +C Ko (Byp) (29)
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Submitting the boundary conditions to the transforma-

tion P, one obtains:

I
(-

135 Pl

(), = plo0e] - ou

Applying the above conditions and taking into consid

eration that

e,, Ple] = GReLipyp)-CaprKa(pyp)

one gets:
C.= O
C, = - 0 U
FrKi(pyop)
and finally:
= (30)
Plyl = pK‘(PYo 5 8 Ueo

The operational representation of the velocity W (xy)

with respect to x , is:
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Plugey] = P28 = p Ple] =

= Ko(Ryp) BUw _ KolByp)
Ke(pyop) B Ka(pyop)

(31)

The last result enables us immediately to establish
thz o; srational form of the funection G (¢) . In fact, com=-

bining equations (18) and (31), one gets:

- WU (x,Yo) — KO(@!OP) (32)
:PI:O'(X.P):I P[ Uo :l Ki(ﬁ‘jop)

i,€s, the final result,
15, CAILCULATION OF THE FUNCTION Cf(x'p) FROM ITS OPERA~
TTONAL FORM,

In order to find the function OXX,P) one has 1o

perform the operation:

-1 KQ(E]OE):\ :
P [Ka.(P YoP) (33)

With this purpose the operation will be performed
first »
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peiet ]

i.e., the integral will be calculated

Xo+ Loo
1 Ko(2) e z
Zﬂ'LJ. Kiz) z d
¥y~ (oo

(33')

(33")

and next, "shift" formula of operational calculus will be

applied.

As it is known, the functions Ko(z) and Ki(z) have

a logarithmic branch point at z =0 ; besides this they

have no other singularities. Moreover, the function Kj(z)

does not have any zeros in the region |ar§Z|<w so the in-

tegrand of (33") is holomorphic therein.

As a result, we may write:

where X = ABCDEFGHA 1s the path of integration,
figure 9.

(3L)

shown in
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D/\)\

!
|

"'—xo_"

ﬁi___AH

Pig. 9

If it is now assumed, that:

Xo -+ 0

then the path 'K may be divided (in the limit) in the fole

lowing manner:

K=L+C+C"+M+WN

where:
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Cl

N

Lo

is the path on the y axis from - o %o +w leay
ing the point z = 0 to the left By means of the
semicircle with r—-0

is the semiecircle of radius R—-oo traced from the
peint z = O to the left of the y - axis

i1s a circle of the radius r--O 'traced from the
point z = O

is the path from - © to O on the x axis, con-
sidering that: -x = re™

is the path from O to = oo on the x axis, con-

sidering that: -x = re

The behavior of the integral (33) along all these

paths will now be investigated.

a) We have:

Z

Ke@ %, _
f @ 274z = 0 (35)
¢

which may be proved by means of Jordan's theorem, taking

into consideration that:

z
Ko(2) 2z) € -
z»oo ZKy(2) i-ljg) z(lt_) e—-z 0

b) The integral



B (36)
Ki(z) 2 =0 ‘
C”
because
Ko(l) Q ‘L Kof!)\' —
I(KA(E\ Z de | £ 2me” z-:?) Ka(2)
T 4o
=2xwe lim }ng zf =0
0] 3y Ing

c¢) In order to calculate the integrals

I Ko €% j‘Kom L% 4y
Ka@ 2 K1)

one uses the following relations:

K o(?:e‘t“‘t) =. Ko(ls F LﬁIo(‘l)

K,.Gze*™) = -Ki@) 7 ], @)

therefore, after a simple transformations



o
-tx
- _ Vo Kel) 14 +Ku®Y Io(t) e
J = —2mi j Blalt) 4640 T

0
Taking into consideration that

Kot Tnct) + Kutty Loty = %

t
it gives:
1= —zmz K{,(t)i_:,mt) &, 37)
d) Finally, as
[ £ 0 = chop[tee
L

considering equations (3L + 38), one gets:

x -tx
-1 Ko(E} —_ e (_ii:_
P [Kup)] - J Kot +TC L) t*

After applying the scale effect of operational cal-
culus, the final result is:
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I e B dt )
O<X'P) - P [m(p\/op)] K2() +9T° T 2t tr (39

[}

It is interesting to mention here that for y,=0

—tx
the vrlue of @ /PP is 0, and, consequently, one ob-

tains O(xpY=0 and therefore W (x)=Ue+0(pUs+Ue) = Weo
thiz csult is obvious, taking into considerations that for
Yo = 0 the perturbation bedy is a cone, and that we is
( —= section 10) the. w -veloecity at a cone surface.

For the same. reason, when the curvature is infinite,
one has two dimensional flow. Therefore, substituting into

equation (39) the value Yy,=o , one must obbain:

1 dt

Ky + L2 tF
[o]

i
[

which may be interesting even from the puresly mathematical

viewpoint,

16. THE APPROXIMATE SOLUTION FOR O‘(x,ﬁ) FROM ITS OPERA-
TICNAL FORM,

Considering the asymptotic expansions of the func-

tions Ko and K, , one obbains for large values of % 3



the expansion of the function O (xp) for small values of

x (after considering the effect of scale) is:

Tup= -t + Al - Al Al @0

It is now possible to compare the present result with
the approximate solution given in section 13, formula (22).

Expanding this expression'into power series, it results ins

& 3l 2GSRI o

Both series (40) and (4O') diverge only from the

fifth term.
Calculating now P-4153EHQELJ for small values
- Ka(Byop)

of p one obtains the asymptotic approximation of the func-

tion O (x,p) for large x. The result is:
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q(x,ﬁ) - BLQ ’ ()—Ll)

X
or:
- 4 .
o(g) = T 1Y)
which was already supposed in section 13,

17. THE APPROXIMATE ANALYTICAL SOLUTION FOR THE FUNCTION

U.(x) .

As known from section 10, equation (17), the func-
tion W) s which represents the distribution of the
U ~velocity along the surface of a straight line diffuser,

may be presented in the form:

U(x) = WUoo + O(x,8,p) (Lo~ Ueo)

where the symbol w, denotes the perturbation velocity at
the nose point of a diffuser (equal to the two dimensional
perturbation velocity deflected through the angle © ) and
W = the corresponding conical perturbation velocity.

For small values of angle & , remembering that:

O x,p) = gl’rg 9 (x,8,p)
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it is possible to replace O'(x,e,p) by the function C'(xp)
In this case, as a first approximation of the function w(x)
one obtains:

U(x) ¥ Wo + O(x,p) (Uo~ Ueo) (L2)

Though, as it was mentioned, this formula is valid
first of all for the values 6+-0 , it may be used in  a
relatively wide range of angles. This is due to the Cfact
that the value of {u,—Uy) In relation to w, decreases
with increasing values.-of 6 .

For instance, for & =10° (and f = 1):

Uo-Uo -
e - LA

while for 6 =20° (P =1):

detta = 0,6
Thus, when the angle 6 increases, the errors due to
replacement of G(X,O.p‘) by 0'(x,p) are compensated, be
cause @lso in view of the fact that O x,p) & 1 ) the seg
ond term on the right hand side of equation (Lli) - where
the errors are generated - is relatively much smaller than
the first one.

Finally, replacing U(X»P) by its approximation
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-2
[’1+ fr 3] - in the range of 04§ </, the error due to this
is absolutely neglegible. In the range § > L} this error in-

creases, but since:

o 1 < oo
P < 0,02
| (%) (1+—}+-?,)zl

(see section 13), it may influence the numerical calcula~

tions only if:
(1) the diffuser is very long, and

(ii) the expression —‘*9&%@— is very great (which,as

wvas said in this section, takes place only if the
angle © 1s extremely small.
In conclusion, remembering that § = ﬁ y and un-
der the conditiom that (i) and (i1) does not hold, the
Tirst approximation for the distribution of the u velocity

along a straight line diffuser is:

W(x) = oo + (Tuf—%&)-l (43)
4BYo

In the case in which 6 is very small (for instance
when ©< 0.025 radians) and at the same time § 1is very

large, we can represent U(y) Dy
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= We t (;*h:h uz;“)i » in the range

4Byo Y445 i.e.
U(x) = £ X£4RY, 3)

. X24BY,

Z U + &iﬁpyo ; for t24;1i e,

The enclosed graphs (6,7,8) compare the results for

U(x) obtained by means of equations (13-15) for angles

8y = 0,025 radians, 6, = 0,05 radians and 8z = 0.125 ra-
dians with those obtained by means of equation (43).

As can be seen, the agreement for ali three angles is

quite good. Using the method of characteristics, the compu-

tation of U (x) takes several hours, while using the equa=-

tion (43), this time is restricted only to minutes.

18. THE DISTRIBUTION OF PERTURBATION VELOCITY IN THE SPACE
ARQUND A STRAIGHT LINE DIFFUSER,

Taking into consideration the result obtained in sec-
tion 1k, equation (31), the w velocity around the straight
line diffuser in the case B8-+=0 may be presented in the

following operational form:

U y) - -4 K°‘E‘,’El ()
Uo P [K1(]3\/°P)] bl
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After considerations similar to those of seetion 15

it iz possible to obtain:

5] _E(_
W3) - fKoLyt)L(t)+K4m10(9t) e PPy 5)
Wo - K&y + mt I t '

where y = V/y;
Expanding the function —é?ﬁﬁﬂ~ into asymptotic se-
1
ries, cne gets:

Kofap) a_% e““‘“P[i_ $3a o, 9+6a+3Zat o2
B g8a 128 a*

75+2a+33ad + 2490 B ] (L6)
tozso Pt :

Submitting each term of (l46) to the transformation
P™, taking into consideration the "shift effect" and sep=

arately the "scale effect", one finally obtains:

sl = - YTE] L Sageent (g

_ 83+y 9§ 42557 1% 7P
7048 [pyJ*-»- (L7)
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where X=x-B(y-Yo) .

As can be seen from figure 10, the variable X has a
very simple geometrical meaning. It represents, namely,the
distance, on the horizontal axls, between the point A (x,y)
and the first Mach line. It is possible therefore, to con-
sider it as the shifted x co-ordinate of the point. It is
obvious that for the diffuser surface the variable X re-

duces itself to theé varilable x.

4
y QK‘// s

Y-Yo

Fig, 10

It is evident that all points on the same Mach 1line
(see figure 10) have the same value for their co-ordinates
X 3 especilally, for the first Mach line, it is x=0 , and
therefore, formula (47) gives immediately:



51

ol

“o,¥y) _ g~
o =y (L8)
result which was already obtained, for a more general case,
in section 5, equation (8).

It is convenient, by analogy with the function o(y),

te define a function:

O, 5) = L. 9) (L9)

where —§I ﬁ) y and y 1s treated as a parameter., This
function is, of course, a generalization of the function
0°(¢{) and may be treated as a limit of the function (com
pare equation 16):

UX,J)~ U

TEREED = o) e

when 6 =~0 , and y = const.

From (47) and (L48) one gets immediately:

o(7,3) = 1- 3;3‘1? + 33+62'1$:+9"1'z§z__.__ (50)

As one should expect, in the limiting case y = 1,the

variable f reduces itself to § , and we have
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o(5,1) = O

which can be verified, comparing the formulae (50) and (L40)
For Yy =0 we have a second limiting case. For small

values of § the function 0 (§,®) is determined by the

series:

- " T2 ( l)
o) = 1-3 T+ BT - T+ ’
and for arbitrary § :
O (3 ,00) = AL (51t
' Ve | K +tli) R
0

The shape of the functions o (§,1) and O (f, )
does not differ essentially. Both functions have the same
initial values (=1) and both approach zero, for large val-

ues of § , as § *

+ The slope of O (f,4) at the point
§=0 is - % and that of O(f &) 1s -——%

The functions 0 (f,y) for y = const. differ still
less from the function ¢ (%.1) = O({) ', because their
values are situated between these two limiting cases (i.e,
§=1land § = ), The functions O({,4)= O (), O(%.2)
and O (f,®) , for values of { in the range between O

and 1, are shown on the graph 9.
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19, THE ANGLE OF INCIDENCE

In the case of axial flow without an angle of inci-
dence, the angle between the flow direction and the dif-
fuser surface is constant for a given cross section. How~
ever, for the flow with an angle of incidence o« this is
no more the case. For this reason it is convenient now %o
assume a cylindrical co-ordinate system x,r, " such that

(1) - the x axis coi cides with the axis of the dif-

fuser

(ii) - the polar angle -+ is chosen in such a manner

' that the meridian plane which contains both
the direction of the undisturbed velocity, and
the x axls corresponds to the value ¢ = 0 (see

figure 11).

W

Fige 11
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It is obvious that the angle of incidence «(g) of the
meridian component of the undisturbed velocity (for & merid

ian plane with an angle ¥ ) is:

tan o) = tane cosh

(see figure 12)

~
~
VR
\S2
\
1
\
\
\
\
\

s
\
\

Elg, 12
or, for small values of o« ¢
o9y = o cos b

Naturally, the component of the undisturbed velocity
W , normal to the meridian plane, is not disturbed by
the diffuser and, consequently, does not influence the po=-
tential ¢ of the distrubed portion of the flow.

As is known from the theory of small disturbances for
a body of revolution, the part of the potential ¢ which 1is
generated by the disturbances, in the case of a flow with

[RRRVEN U SR
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an angle of incidence, can be decomposed into two poten-
tials:

1) the first one, ¢, , equal to the corresponding po
tential of the flow without an angle of incidence,
and

2) the second one, or cross flow potential,

¢, = A —g% cosv

where A is to be obtained from the boundary condi~

tion, namely:

g: = - U 05 D

Taking into consideration that the operational form
of Py is already known (see section 1lli) and can be repre-

sented as
Pled = B Ko (prp) .

(where B does not depend on r ), the following result can

be immediately obtained:

P[‘{’:] P[A%%cosﬁ‘] :Acosﬁ‘—ab; Ple) =

it

Cpp cos Ki(prp)
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where C 1is the value to be obtained from the boundary con-
dition just mentioned. The operational form of this condi-
tion 1s:

PRE] = L ple] =
=4Cp*p® cos? [Ko(ﬁrp)+K1(f3'"P)] =
= - & U cos P

The value of G, resulting from the last formula, is

unm
B2 et [Ko(arp) + Ka(prp)]

and therefore:

- Lot U oo COS\" K4@rp) (52)
P[‘PW-]‘” ﬁp[Ko(prP) + K,_(P,rp)]

Recalling that:

20 = 3%

and therefore:



Plusol = P[] = P‘P[‘éa]

one obtains finally:

Wa(x) - j:fl[_ 2Ka(@rp) cos ¥ ] ' - (53)

which is the operational representation of the additional
W, Velocity generated by the angle of incidence of the
stream,

The non-operational form of W,(x) can be obtained
by a pfocedure analogous to that of section 15. It may be
performed by changing, in a sultable way, the path of in-
tegration of the integral involved in the operation P~*
or by approximate methods, such as finding the asymptotic
expansions of the Bessel functions Ko, Ky and K, for
large values of P

It is also—éossible to extend these results to the
whole space around the diffuser, and for a non-limiting
case of B = 0, by use of the same methods and considerae
tions analogous to those made in order to generalize the
results of the case without an incidence angle, as shown

in the former sections.

The only difference in comparison with the former
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methods will appear because of the singular points of the
functions K, (z) and K,(z) « In view of these singular
points, it is necessary to take into consideration the re-
sidues of the integrand, while changing the path of inte-
gration in order to perform the operation P! in the

formula (53).
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